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Abstract. Unrenormalizable theories contain infinitely many free parameters. Considering these theories in
terms of the Wilsonian renormalization group (RG), we suggest a method for removing this large ambiguity.
Our basic assumption is the existence of a maximal ultraviolet cutoff in a cutoff theory, and we require
that the theory be so fine tuned as to reach the maximal cutoff. The theory so obtained behaves as a local
continuum theory to the shortest distance. In concrete examples of the scalar theory we find that at least
in a certain approximation to the Wilsonian RG, this requirement enables us to make unique predictions in
the infrared regime in terms of a finite number of independent parameters. Therefore, this method might
provide a way for calculating quantum corrections in a low-energy effective theory of quantum gravity.

1 Introduction

Quantum field theories are classified according to their
renormalizability. It is needless to say that not only renor-
malizable, but also unrenormalizable theories have played
an important rôle in particle physics [1]. It is however
widely accepted that an unrenormalizable theory is only
a low-energy effective theory of a more fundamental the-
ory. The low-energy effective theory should contain the
correct low-energy degrees of freedom of the fundamental
theory, and it should be possible, within the framework of
the effective theory, to compute approximate low-energy
quantum processes of the fundamental theory.

If the effective theory is perturbatively unrenormal-
izable, we face a serious problem. How many indepen-
dent parameters should the perturbatively unrenormal-
izable theory have? The answer in perturbation theory
is: infinitely many, by definition. Of course, this does not
prevent us from applying perturbation theory to unrenor-
malizable theories to make predictions, as in chiral per-
turbation theory which has a certain success [2–4]. Nev-
ertheless we may ask why chiral perturbation theory has
so many independent parameters at the quantum level,
although it is the effective theory of QCD. This large am-
biguity cannot be controlled by a symmetry [2,3], and we
are concerned with this problem which always exists in
unrenormalizable effective theories. In this paper, we pro-
pose to remove this large ambiguity within the framework
of the effective theory.

The idea is based on a simple intuitive picture. Sup-
pose we formulate both a fundamental theory and its low-
energy effective theory in terms of the Wilsonian renor-
malization group (RG) [5]. We assume that the effective
theory is a cutoff theory. Since we assume that the fun-

damental theory is free from the ultraviolet cutoff, Λ0, we
can let go Λ0 to infinity. That is, starting at some point
in the infrared regime, the RG flow in the fundamental
theory evolves along a renormalized trajectory, and ap-
proaches an ultraviolet fixed point in the ultraviolet limit.
The flow has to evolve for “infinite time” to arrive at the
fixed point [5]. The RG flow in the effective theory that
evolves for the “ maximal time” may be the best approxi-
mation to the renormalized trajectory of the fundamental
theory, and the effective theory along that trajectory be-
haves as a local continuum theory down to the shortest
distance. The large ambiguity of the cutoff theory could
be removed in this way. In Sect. 2 we will formulate our
idea.

We will consider the scalar theory in four, five and six
dimensions in Sect. 3, and apply our idea to these theo-
ries. It will be shown that in lower orders in our approxi-
mation to the Wilsonian RG, the ambiguities inherent in
these theories can be removed. We will also argue that
the ambiguity in four dimensions, which we will fix, is the
renormalon ambiguity [6,7]. Einstein’s theory of gravity
and also Yang–Mills theories in more than four dimen-
sions are perturbatively unrenormalizable, and the con-
ventional method of perturbation theory loses its power
in these theories.1 The application to quantum gravity
and also higher-dimensional Yang–Mills theories would go
beyond the scope of this paper, and we leave this to future
work. However, as far as renormalization is concerned, the
scalar theory in more than four dimensions may be seen
as an oversimplified model of a low-energy effective theory
of quantum gravity.2 [8]

1 See [9] for recent progress in quantum gravity
2 Our approach is related to [10]
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We conclude in Sect. 4, and the explicit expressions for
the β functions which we use in an approximation scheme
that is specified in Sect. 3 are given in the appendix.

2 Making unrenormalizable theories predictive

Our interest is directed to field theories [5] which become
weakly coupling in the infrared regime. These theories
can be perturbatively renormalizable or unrenormalizable.
Suppose we consider such a theory in terms of the Wilso-
nian RG [5]. We then gradually increase the ultraviolet
cutoff Λ0 while keeping fixed the values of the coupling
constants of the theory at some point Λ in the infrared
regime, and consider the RG flow as a function of Λ0. In
the case of a non-trivial theory, the ultraviolet cutoff Λ0
can become infinite, and the RG flow converges to a fixed
point, if a certain set of the coupling constants is exactly
fine tuned at Λ, that is, if they lie exactly on a renor-
malized trajectory [5]. If the theory is trivial, Λ0 cannot
become infinite, or the RG flow does not converge to a
point. Suppose there exists a maximal value Λmax in the
theory. To reach Λmax, we have to fine tune the values of
the coupling constants at Λ as in the case of a non-trivial
theory.

With this observation, we now come to formulate our
method under the basic assumption that there exists a
maximal value of the ultraviolet cutoff Λmax in a theory. If
the theory is perturbatively renormalizable, there should
be a set of dimensionless coupling constants. In this case
we regard all the coupling constants with a canonical di-
mension < 0 as dependent coupling constants. If the the-
ory is perturbatively unrenormalizable, there should ex-
ist a set of coupling constants with a negative canonical
dimension ≥ dmax, which should be regarded as indepen-
dent. In this case we regard all the coupling constants
with a canonical dimension < dmax as dependent coupling
constants. With this classification of the independent and
dependent coupling constants, we then require from the
dependent coupling constants that for given values of the
independent coupling constants in the infrared regime, the
dependent ones are so fine tuned that one arrives at the
maximal value of the ultraviolet cutoff.3

Polchinski [13] investigated the Wilsonian RG flow of
the scalar theory in four dimensions to show its pertur-
bative renormalizability.4 His observation, assuming that
the mass parameter can be neglected, is that there exists a
trajectory in the space of coupling constants, which is at-
tractive in the infrared limit. That is, whatever the initial
values of the coupling constants at Λ0 are, they converge
to the trajectory, if the Λ0 is large enough. This is then
interpreted as perturbative renormalizability. Therefore,
in the class of theories, in which Polchinski’s criterion on

3 This idea is in fact similar to the principle of minimal sen-
sitivity [11] which tries to resolve the renormalization scheme
ambiguity in perturbation theory

4 For the extension to Yang–Mills theories, see [24], for in-
stance

perturbative renormalizability can be applied, the ultravi-
olet cutoff Λ0 should be sufficiently large, so that physics
in the infrared regime has less dependence on the initial
values of the coupling constants at Λ0. It should therefore
be assumed for perturbative renormalization working in
those trivial, but perturbatively renormalizable theories,
that the intrinsic cutoff of the theory is so large that the
non-perturbative effects due to the finite intrinsic cutoff
are very small in the infrared regime.5 If the intrinsic cut-
off is low, the initial value ambiguities are not sufficiently
suppressed in the infrared regime, and consequently the
perturbative calculations may not be reliable. Therefore,
the intrinsic cutoff can be much larger than the actual
physical cutoff at which new physics enters. As for these
perturbative renormalizable theories, our requirement is a
slight extension of the requirement in perturbative renor-
malization; a maximal, instead of a large, cutoff is as-
sumed.

According to Polchinski [13], we interpret a theory as
perturbatively unrenormalizable, if there is no infrared at-
tractive trajectory (or no infrared attractive subspace of
a finite dimension). Physics in the infrared regime in this
case depends on the initial values of the infinitely many
coupling constants at Λ0. This is exactly the situation
which we are more interested in. Although in the case of
perturbative renormalizable theories, our requirement of a
maximal cutoff is a slight extension, this requirement, ap-
plied to a perturbatively unrenormalizable theory, could
select a trajectory out of the infinitely many trajectories.
The theory along this trajectory will behave as a local con-
tinuum theory to the shortest distance. In the next section
we will consider concrete unrenormalizable theories, and
we will see that our idea works at least in a certain approx-
imation. If our idea could be founded in a more rigorous
manner, it could be promoted to a principle, which we
would like to call the principle of maximal locality. It is,
however, beyond the scope of the present paper to do this
task.

3 Application to the scalar theory
in various dimensions

3.1 Continuous Wilsonian renormalization group

As we have explained in detail in Sect. 2, our interest is
directed to trivial theories. To define such theories in a
non-perturbative fashion, we have to introduce a cutoff.
A natural framework to study cutoff theories is provided
by the continuous Wilsonian RG [5,12,6–9,?,11–15]. Let
us briefly illustrate the basic idea of the Wilsonian RG
approach in the case of the N component scalar theory
in d euclidean dimensions.6 One divides the field φ(p) in
the momentum space into low- and high-energy modes
according to

φk(p) = θ(|p| − Λ)φk
>(p) + θ(Λ − |p|)φk

<(p),
k = 1, . . . , N. (3.1)

5 See for instance [7]
6 See for instance [16] for a review
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The Wilsonian effective action is then defined by integrat-
ing out only the high-energy modes in the path integral:

Seff [φ<, Λ] = − ln
{∫

Dφ>e−S[φ>,φ<]
}
. (3.2)

It was shown in [5,12] that the path integral corresponding
to the difference

δSeff = Seff [φ<, Λ + δΛ] − Seff [φ<, Λ] (3.3)

for an infinitesimal δΛ can be exactly carried out, yielding
the RG evolution equation of the effective action

∂Seff

∂t
= −Λ

∂Seff

∂Λ
= O(Seff), (3.4)

where O is a non-linear operator acting on the functional
Seff . There exist various (equivalent) formulations [12–15],
but in this paper we consider only the Wegner–Houghton
(WH) equation [12]. Since Seff is a functional of fields, one
can think of the WH equation as coupled differential equa-
tions for infinitely many couplings in the effective action.
The crucial point is that O can be exactly derived for a
given theory, in contrast to the perturbative RG approach
where the RG equations are known only up to a certain
order in perturbation theory. This provides us with possi-
bilities to use approximation methods that go beyond the
conventional perturbation theory.

In the derivative expansion approximation [17,14,18–
20], one assumes that the effective action Seff [φ,Λ] can be
written as a space-time integral of a (quasi-) local function
of φ, i.e.,

Seff [φ,Λ] = (3.5)∫
ddx


1

2

N∑
k,l=1

∂µφ
k∂µφ

lZkl(φ,Λ) + V (φ,Λ) + . . .


 ,

where . . . stands for terms with higher order derivatives
with respect to the space-time coordinates. In the low-
est order of the derivative expansion (the local potential
approximation [17,14]), there is no wave function renor-
malization (Zkl(φ,Λ) = δkl), and the RG equation for
the effective potential V can be obtained. Since it is more
convenient to work with the RG equation for dimension-
less quantities, which makes the scaling properties more
transparent, we rescale the quantities according to

p → Λp, φk → Λd/2−1φk, V → ΛdV. (3.6)

Then the RG equation V (φ,Λ) is given by [14]

∂V

∂t
= −Λ

∂V

∂Λ
= a ln(1 + V ′ + 2ρV ′′)

+ a(N − 1) ln(1 + V ′) + dV + (2 − d)ρV ′, (3.7)

where the prime on V stands for the derivative with re-
spect to ρ, and

ρ =
1
2

N∑
k=1

φkφk, a =
1

2dπd/2Γ (d/2)
. (3.8)

Equation (3.7) (or the one which is derived from (3.7) for
F = V ′ = ∂V/∂ρ) is the central equation we will ana-
lyze in the following subsections. Therefore, all the results
we will obtain are valid only within the local potential ap-
proximation. There are however no fundamental problems
in going beyond this approximation.

3.2 Toy model in d = 3

The scalar theory in d = 3 dimensions has a non-trivial
fixed point, a Wilson–Fisher fixed point [5], and is more-
over asymptotically free. So this theory is non-trivial as
is well known, and therefore lies outside of our interest.
However, we would like to consider this theory with in-
frared and ultraviolet interchanged in order to illustrate
what we mean by “being closest to a non-trivial theory”.
So the results obtained here will be compared with those
of trivial theories which we will consider later.

The interchange of infrared and ultraviolet just means
the replacement t → −t. We then consider F = V ′ =
∂V/∂ρ for N = 1, and derive the evolution equation from
(3.7) for F . We have

∂F

∂t
= −2F + ρF ′ − a

3F ′ + 2ρF ′′

1 + F + 2ρF ′ , a =
1

4π2 . (3.9)

The power series ansatz

F (ρ, t) = 4af0(t) +
∞∑

n=1

fn(t)
[ ρ

4a

]n
(3.10)

defines the coupling constants fn, and (3.9) gives a set
of β functions which in lower order in the expansion are
given by

β0 =
df0

dt
= −2f0 − 3

4
f1

(1 + f0)
, (3.11)

β1 =
df1

dt
= −f1 +

9
4

f2
1

(1 + f0)2
, (3.12)

where we have made a truncation at n = 1 above. There
exist two fixed points

(f0 = 0, f1 = 0),
(
f0 = −1

7
, f1 =

16
49

)
. (3.13)

All the directions from the Gaussian fixed point (at this
level of truncation) are infrared stable; the eigenvalues are
(−1,−2) with the corresponding eigenvectors (−3/4, 1)
and (1, 0), respectively. The solution near the origin can
easily be found:

f0 = −3
4
f1 +

[
C − 27

16
log(f1)

]
f2
1 + O(f3

1 ), (3.14)

where C is an integration constant. The solution is ob-
tained from df0/df1 = β0/β1. At this stage, f0 and f1 be-
have independently. Note that there is a certain infrared
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Fig. 1. Fine tuning of f0(0) for a given value f1(0) = 0.01 in
the non-trivial case d = 3 (with infrared and ultraviolet inter-
changed). The “running time” T0 = lnΛ0/Λ becomes infinite
at f0(0) � −0.00718

attractiveness, because f0 approaches a definite function,
−(3/4)f1, in the infrared limit f1 → 0.

The integration constant C can be determined by re-
quiring that the RG flow approaches the ultraviolet fixed
point (f0 = −1/7, f1 = 16/49). That is, the coupling con-
stant f0 has to be exactly fine tuned for the ultraviolet
cutoff Λ0 to become infinite. If f0 is not exactly fine tuned,
the RG flow runs into infinity at some finite Λ0. The fine-
tuning procedure is shown in Fig. 1 for f1 = 0.01 at t = 0,
where the vertical axis is T0 = logΛ0/Λ and the horizon-
tal one is f0(0). From Fig. 1 we find that in this case f0 at
t = 0 should be fine tuned at −0.00718 . . .

3.3 d = 4: Perturbatively renormalizable case

We now come to discuss a trivial, but perturbatively renor-
malizable case.7 In this case, our interest focuses on the
non-perturbative ambiguity that results from the fact that
the perturbation series diverges. There are rigorous results
that this divergence is dominated by the renormalon sin-
gularity in the Borel plane, and the form of the ambiguity
is known [6]. Since the Wilsonian RG is non-perturbative,
it is natural to assume that it also contains this informa-
tion. Of course, it is not clear that one can see it within
the framework of our approximation. We will argue, based
on our numerical analysis, that this is the case.

As in the case for d = 3, we consider the derivative
F = ∂V/∂ρ = V ′, where the potential V is assumed to be
expandable as

V (ρ, t) = v0(t) +
∞∑

n=1

1
n + 1

fn(t)
(4a)n

[ρ − 4af0(t)]n+1

= v0(t) +
1
2
f1(t)
4a

[
1
2
φ · φ − 4af0(t)

]2

7 We assume that the scalar theory in four dimensions is
trivial [21,7,22]

+
1
3
f2(t)
(4a)2

[
1
2
φ · φ − 4af0(t)

]3
+ · · · . (3.15)

The constant a is given in (3.7) (a(d = 4) = 1/16π2),
and ρ = φ · φ/2 =

∑N
i=1 φiφi/2. Here we have shifted ρ

by 4af0(t) for the reason we will give soon.8 The squared
mass is 2f0f1 so that if limt→∞ 2f0(t)f1(t) > (<)0, we are
in the (un)broken phase, and the critical surface is defined
by the RG flows that satisfy limt→∞ 2f0(t)f1(t) = 0. In-
serting the power series ansatz (3.15) into the evolution
equation for F ,

∂F

∂t
= 2F + (2 − d)ρF ′

+ a

[
3F ′ + 2ρF ′′

1 + F + 2ρF ′ + (N − 1)
F ′

1 + F

]
, (3.16)

we can obtain the β functions, βn = dfn/dt, at any finite
order of truncation. (The explicit expressions in lower or-
ders are given in Appendix A.) One can convince oneself
that the nth order β function has the form

βn = (2 + 2n − nd)fn+
∑

i1+2i2+···+nin=n+1

ηi1···inf
i1
1 · · · f in

n

+
n+1∑
l=1

n+1∑
m=0

[ ∑
−il0+···+milm=n+1

χ
(l)
il0···ilm

f il0
0 f il1

1 · · · f ilm
m ∆l

]
,

(3.17)

where

∆ = (1 + 2f0f1)−1. (3.18)

Given the β functions, we investigate the infrared and
ultraviolet behavior of the theory, and we first investigate
the infrared behavior for9

d = 4 and N = 4. (3.19)

Obviously, (f0 = 3/4, fn = 0(n ≥ 1)) is a fixed point
(Gaussian fixed point). The stability of the RG flows near
the Gaussian fixed point cannot be simply discussed in
the present case, because the β functions are singular at
this point (1/f1, which is present in β0, appears in other
β functions). So we construct explicitly the solution near
the Gaussian fixed point to investigate its stability. To this
end, we eliminate t in favor of f1 using the set of equations

β1
dfn

df1
= βn (n �= 1), (3.20)

which is called the reduction equation in [23]. We find that
the power series solution

f0 =
3
4

+
∞∑

l=0

C
(l)
0 f l+1

1 , (3.21)

fn = fn+1
1

∞∑
l=0

C(l)
n f l

1 (3.22)

8 Shifting ρ improves the truncation dependence in comput-
ing critical exponents in lower dimensions [19,20]

9 We have chosen the case for N = 4, because we would like
to apply the results below to the standard model elsewhere
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exists. That is, the expansion coefficients can be uniquely
computed for a given truncation of the series (3.15). Us-
ing this power series solution, we obtain the general so-
lutions that surround this special solution by solving the
linearized equations

−3f2
1

dδf0

df1
	 2δf0 − 3

4f1
δf2,

−3f2
1

dδfn

df1
	 [(2 − 2n) − 3pnf1]δfn +

∑
i �=n

q(f1)δfi. (3.23)

Therefore, the integration constant Kn of δfn appears in
the exponential form

Kn exp
(

2 − 2n
3f1

)
fpn

1 , (3.24)

where pn are fractional numbers. We find that for n ≤ 2

f0 =
3
4

− 9
16

f2
1 +

225
64

f2
1 − 7857

256
f3
1

+
269001
1024

f4
1 − 12806991

4096
f5
1 +

650870883
16384

f6
1 + O(f7

1 )

+ K2 exp
(

− 2
3f1

− 57
4
f1

)
f

7/2
1

×
[

3
16

− 9
8
f1 +

2799
256

f2
1 + O(f3

1 )
]
, (3.25)

f2 =
15
4
f3
1 − 189

8
f4
1 +

7479
64

f5
1 − 12879

32
f6
1

+ O(f7
1 ) + K2 exp

(
− 2

3f1
− 57

4
f1

)
f

9/2
1 . (3.26)

Note that there is no independent integration constant
for f0. The general solutions define a n-dimensional hy-
persurface in the space of n+ 1 coupling constants, which
is nothing but the critical surface. We see from (3.24) that
thanks to the exponential function exp[(2 − 2n)/3f1] the
deviations δfn from the power series solutions vanish very
fast as f1 approaches zero, implying that the power series
solutions (3.21) and (3.22) are very attractive in the in-
frared limit. This infrared attractiveness is interpreted as
perturbative renormalizability by Polchinski [13,24]. We
adapt to his interpretation, and call these solutions the
perturbative solutions.10 The exponential deviations de-
fined in (3.23) are therefore non-perturbative contribu-
tions, which cannot be computed usually [7]. So we call
them a non-perturbative ambiguity as in [7].

Before we proceed, we would like to argue that the
non-perturbative ambiguity we mentioned above results
from the fact that perturbation series diverge, that is, it
is the renormalon ambiguity [6]. We have computed higher
orders in the power series expansion (3.26) and found that

10 Except for the first coefficients in the expansions (3.21)
and (3.22), we cannot compare them with those in perturba-
tion theory, because the approximation employed here to solve
the non-perturbative evolution equation (3.16) is different from
that in perturbation theory. See, however, the discussion below

they do not approximate the exact (numerical) result bet-
ter. The one with the first four terms in (3.26) is the best
approximation among lower orders. From this fact, we be-
lieve that the power series solution (3.26) does not con-
verge, and that it is an asymptotic series. So, the power
series (3.26) reflects the property of perturbation series in
the conventional perturbation theory, as far as our numer-
ical analysis in lower orders suggests. This is one of the
reasons why we interpret the power series as the pertur-
bative series. This interpretation is also supported by the
fact that not only the leading form of the non-perturbative
ambiguity, the last exponential term in (3.26), agrees with
that of the known renormalon ambiguity [6], but also the
coefficient of 1/f1, 2/3, in the exponential function. The
power of f1 in front of the exponential function, that is
9/2, differs slightly from the expected value 3. The origin
is presumably the local potential approximation to the ex-
act RG evolution equation. Therefore, we believe that the
last term in (3.26) is the renormalon ambiguity. As we
will see, we can remove this ambiguity by requiring the
maximal cutoff.

Off the critical surface (defined by (3.25) and (3.26)),
f0 increases in the infrared limit and approaches infinity.
We would like to solve the reduction equation (3.20) in this
limit. To this end, we consider the evolution of m2 = 2f0f1
(the mass squared in the broken phase) and find that it
also increases in the limit. Therefore, in the lowest order,
we just have to solve

−3
4
f2
1

dfn

df1
	 (−1)n 3

4
fn+1
1 + (2 − 2n)fn, (3.27)

and obtain for instance

f2 	 −4
3
f1 − 1

2
f2
1 +

32
9

exp
(

− 8
3f1

)
Ei
(

8
3f1

)

+ K̂2 exp
(

− 8
3f1

)
. (3.28)

The solution becomes a power series in f1, if the integra-
tion constant K̂2 is set equal zero:11

f2 =
3
8
f3
1 +

9
8
f4
1 + · · · (3.29)

So the last term in (3.28) exhibits the non-perturbative
ambiguity, which we will compute by requiring the maxi-
mal cutoff later on.

To proceed, we would like to study the ultraviolet be-
havior of the theory, and consider the general form of the
β functions (3.17) as well as the explicit form for β0 and
β1 (given in (A.1)–(A.4)) along with the reduction equa-
tion (3.20). To solve (3.20), we assume that |fn| (n ≥ 2)
increases as f1 increases, while f0 remains finite in the
limit. It follows that, under this assumption, the coupling
constants have the leading behavior

f0 = J
(0)
0 + J

(1)
0 /f1 + O(f−2

1 ), (3.30)

fn = J (0)
n fn

1 + O(fn−1
1 ) (n ≥ 2). (3.31)

11 This can be seen by using Soldner’s theorem, − exp(1/x)
Ei(−1/x) = 1/(1 + x/(1 + x/(1 + 2x/(1 + · · ·)
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The coefficient J
(0)
0 cannot be determined, while the oth-

ers can be uniquely computed as functions of J
(0)
0 . At

n = 3 for instance we find

J
(1)
0 =

−3 + 8J (0)
0 − 2J (0)

2

3 + 8(J (0)
2 )2 − 6J (0)

3

, (3.32)

J
(0)
2 =

{
−1.2186 · · ·
0.3722 · · · J

(0)
3 =

{
0.8382 · · ·
0.2329 · · ·

for

{
broken phase,

unbroken phase.
(3.33)

The leading behavior given by (3.30) and (3.31) is stable
in the ultraviolet limit at least for n ≤ 3. To show this, we
construct the general solutions that surround the lading
behavior (3.30) and (3.31) in the ultraviolet limit, and
denote the deviations from the leading behavior by δfn.
We first find

dδf0

df1
	 −r0

δf0

f2
1
, r0 	

{
0.538
1.95

for

{
broken phase,

unbroken phase.
(3.34)

This implies that the leading order deviation δf0 is just a
shift of the undetermined constant J

(0)
0 , which we denote

by δJ
(0)
0 . For δf2,3, we find




dδf2

df1
dδf3

df1


 	

(
−4.98/f1, −2.95/f2

1

−9.57, −3.98/f1

)(
δf2

δf3

)

+ δJ
(0)
0

(
4.02/(J (0)

0 )2

5.72f1/(J (0)
0 )2

)
(3.35)

for the broken phase. Similarly, we find that for the un-
broken phase




dδf2

df1
dδf3

df1


 	

(
0.302/f1, 3.26/f2

1

−1.03, 1.30/f1

)(
δf2

δf3

)

+ δJ
(0)
0

(
0.0697/(J (0)

0 )2

0.0491f1/(J (0)
0 )2

)
. (3.36)

The corresponding solutions are found to be

δf2 	




0.101(ηa + ηb)δJ
(0)
0 f1/(J (0)

0 )2

+ηaf
−10.3
1 + ηbf

0.329
1 ,

0.0185(ηc + ηd)δJ (0)
0 f1/(J (0)

0 )2

+f0.302
1 [ηc cos(1.83 ln f1)

+ηd sin(1.83 ln f1)],

(3.37)

Fig. 2. Fine tuning of f2(0) for given values f1(0) = 0.1 and
f0(0) = 4π2 in the trivial, but perturbatively renormalizable
case (d = 4). The running time T0 becomes maximal at f2(0) �
0.000528. f1 and f2 are the coupling constants for φ4 and φ6,
respectively (see (3.15))

δf3 	




1.19(ηa + ηb)δJ
(0)
0 f2

1 /(J (0)
0 )2

+1.80[ηaf
−9.30
1 + ηbf

1.33
1 ],

−0.0231(ηc + ηd)δJ (0)
0 f2

1 /(J (0)
0 )2

−0.562f1.30
1 [ηc sin(1.83 ln f1)

−ηd cos(1.83 ln f1)],

(3.38)

for the broken and unbroken phases, respectively. There-
fore, limf1→∞ δf2/f2 = limf1→∞ δf3/f3 = 0, implying
that the leading behavior (3.30) and (3.31) is stable, and
that the coupling constants f2 and f3 (which had a neg-
ative canonical dimension before they were made dimen-
sionless) diverge at the same scale Λ0 at which f1 diverges.
This feature presumably continues to higher order trun-
cations. That is, all the coupling constants fn (n ≥ 1)
diverge at the common scale. But whether our method
works or not does not depend on it.

At this stage we would like to explain why we have
shifted ρ in the ansatz (3.15). The reason is the following.
f0 approaches a finite, undetermined constant J

(0)
0 in the

ultraviolet limit so that the propagator effect ∆ (given
in (3.18)) which appears in the β functions βn is finite
for any positive f1 in the ultraviolet limit. This makes
the numerical analysis in the ultraviolet limit easier, while
without the shift in the unbroken case ∆ = (1 + m2)−1

may easily become singular for some finite positive f1.
Of course this complication is not a serious hindrance for
applying our method.

According to Sect. 2, we regard f0 and f1 as indepen-
dent parameters, while the other coupling constants fn

(n ≥ 2) should be regarded as dependent. We then re-
quire that for given values of f0 and f1 at Λ << Λ0, all
the dependent coupling constants fn (n ≥ 2) should be
so fine tuned at Λ that fn (n ≥ 1) diverge at the maxi-
mal value of Λ0. This program cannot be solved analyt-
ically, and we relay on numerical analyses. In Fig. 2 we
plot the running time T0 = ln(Λ0/Λ) against f2(t = 0)
for f0(0) = 1/4a = 4π2 and f1(0) = 0.1 in the case of
the truncation at n = 2. Comparing Fig. 2 with Fig. 1
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Fig. 3. Fine-tuned value of f2(0) as a function of f1(0) in
d = 4 (f0(0) = 4π2). The solid and dotted lines correspond to
the truncations at n = 2 and 3, respectively

Fig. 4. Fine-tuned value of f3(0) as a function of f1(0) in d = 4
(f0(0) = 4π2)

of the non-trivial case, we observe a similarity, although
Tmax cannot be infinite in the present case. We see that
T0 is peaked at f2(0) 	 0.000528. To see the truncation
dependence we calculate the fine-tuned value of f2(0) as a
function of f1(0) for the truncations at n = 2 and 3. The
result is plotted in Fig. 3 for the case f0(0) = 1/4a = 4π2.
The solid and dotted lines correspond to n = 2 and 3,
respectively. We observe that the result does not depend
very much on the order of truncation. The fine-tuned value
of f3(0) as a function of f1(0) is plotted in Fig. 4 for
f0(0) = 1/4a = 4π2.

Now we come to the determination of the coefficient K2
in (3.26), which exhibits a non-perturbative correction of
the renormalon type [6,7]. In Fig. 5 we plot T0 = ln(Λ0/Λ)
against K2, and in Fig. 6, T0 is plotted against f2(0) at
f1(0) = 0.1. From this result we obtain

K2 	 7 × 103. (3.39)

This means a departure of about 3(0.1)% from the per-
turbative result at f1 = 0.1(0.07). Needless to say that
the corresponding effect in the standard model could be
in principle measurable.

Fig. 5. Determination of the non-perturbative coefficient K2

(given in (3.26)) in d = 4

Fig. 6. Removing the non-perturbative ambiguity of f2 on the
critical surface at f1 = 0.1 in d = 4

At last we would like to compare the maximal running
time Tmax obtained in perturbation theory with our non-
perturbative value. To this end, we use the perturbative
evolution equation

∂f1

∂t
= −3f2

1 , (3.40)

and obtain Tmax = 10/3 	 3.3, which should be compared
with the non-perturbative result in Figs. 5 and 6.

These results obtained above show that our method
works in the four-dimensional case. It is certainly possible
to formulate our idea in terms of lattice theory. Then one
could improve the accuracy of the calculation of K2.

3.4 d = 5, 6: Perturbatively unrenormalizable cases

We now come to discuss unrenormalizable cases:12

d = 5, 6 and N = 4. (3.41)

We emphasize that as far as renormalization is concerned,
and we are interested in the infrared regime, the scalar
12 There exist perturbatively unrenormalizable theories which
are nevertheless non-trivial. See for instance [25]
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theory in five or higher dimensions may be seen as an
oversimplified model of a low-energy effective theory of
quantum gravity [8].

As in the case for d = 4, we consider the derivative F =
V ′, and follow basically the investigations of that case.
The calculations for the d = 6 case are the same as for
the d = 5 case, and therefore, we consider only the d = 5
case below. So the details for the d = 6 case are suppressed
below, but we give the final result for this case, too, at the
end. We first investigate the infrared behavior, and find
that the Gaussian point (f0 = 1/2, fn = 0 (n ≥ 1)) is a
fixed point. As in the previous case, we construct explicitly
the solution near the Gaussian fixed point to investigate
its stability. We find that the power series solutions like
(3.21) and (3.22) do not exist. Instead, the expansion of
the form (which is similar to (3.14) in the non-trivial case)

f0 =
1
2

− 3
16

f1 +
171
160

f2
1 +

[
9
2

ln f1 − 435
128

+
C2

12

]
f3
1

−
[

54
7

ln f1 +
554013
62720

+
C2

7

]
f4
1

+
[

3225933
250880

+
10441
8960

C2 +
281907
4480

ln f1

]
f5
1

+ O(f6
1 ln f1), (3.42)

f2 = f3
1

(
15
2

+ [54 ln f1 + C2]f1

+
[
81 ln f1 +

3
2
C2 − 9315

32

]
f2
1 + O(f3

1 ln f1)
)
, (3.43)

for d = 5 at the truncation n = 2 exhibit the general solu-
tions, where C2 is an integration constant. As in the case
for d = 4, there is no independent integration constant
for f0, and the general solutions define the n-dimensional
critical surface in the space of n + 1 coupling constants.
As K2 in (3.26), we will calculate C2 by requiring the
maximal cutoff later. The ambiguity expressed by C2 in
(3.43) is indeed suppressed by f4

1 in the infrared limit,
but we also see that in contrast to (3.25) and (3.26) in
d = 4 dimensions, there are no strong infrared attractive
functions like the perturbative solutions (3.21) and (3.22).
Therefore, following Polchinski [13,24], the theory is per-
turbatively unrenormalizable, in accord with the result in
perturbation theory.

Whether power series solutions like (3.21) and (3.22)
exist depends crucially on the existence of a dimensionless
coupling constant. Namely, if there is no dimensionless
coupling constant, there are no couplings for which the
linear term in the β function, (2 + 2n− nd)fn in the case
of (3.17), vanishes. Then the reduction equation (3.20)13
becomes

dxx
dy
dx

= dyy (3.44)

in the vicinity of the Gaussian fixed point, where x and
y denote generic coupling constants, and dx and dy are

13 Application of reduction of coupling constants to quantum
gravity has been considered in [26]. See also [27]

their canonical dimensions before the dimensional rescal-
ing (3.6). The solution of (3.44) is simply y = C̃xdy/dx ,
where C̃ is an integration constant, but one can convince
oneself that logarithmic terms such as xdy/dx lnx are
needed to construct a solution of the full problem. This is
the origin of the logarithmic terms in (3.42) and (3.43),
and also in (3.14). The difference between C2 in (3.43)
and C in (3.14) is that C is determined by non-triviality,
while C2 will be determined by the maximal cutoff.

Off the critical surface, the mass squared m2 = 2f0f1
in the broken phase increases in the infrared limit, and
approaches infinity. In the lowest order, we therefore have
to solve

−f1
dfn

df1
	 (−1)n 3

4
(1 + 3n)fn+1

1 + (2 − 3n)fn, (3.45)

and obtain

fn 	 3
4(3 − 2n)

(−f1)n+1 + Ĉnf
3n−2
1 (n ≥ 2). (3.46)

So the last term in (3.46) exhibits the non-perturbative
ambiguity, which could be removed by our method.

The ultraviolet behavior in the case for d = 5 is basi-
cally the same as in the case for d = 4. Indeed, except for
(3.32) and (3.34), which now become

J
(1)
0 =

−3 + 12J (0)
0 − 2J (0)

2

3 + 8(J (0)
2 )2 − 6J (0)

3

, (3.47)

dδf0

df1
	 −r0

δf0

f2
1
, r0 =

{
0.8064 · · ·
2.9208 · · ·

for

{
broken phase,

unbroken phase.
(3.48)

all the results, (3.33) and (3.35)–(3.38), remain valid. So
concerning this part of our discussions, we have nothing
to add to what we have found in the case for d = 4.

Only f0 has a canonical dimension ≥ 0 before the
rescaling (3.6), and the coupling constant that has the
largest canonical dimension among the coupling constants
with a negative canonical dimension is f1. Therefore, ac-
cording to Sect. 2, we regard f0 and f1 as independent
parameters, while the other coupling constants fn (n ≥ 2)
should be regarded as dependent. Then we require that for
given values of f0 and f1 at Λ << Λ0, all the dependent
coupling constants fn (n ≥ 2) should be so fine tuned at
Λ that fn (n ≥ 1) diverge at the maximal value of Λ0. We
perform similar numerical investigations as in the case for
d = 4. In Figs. 7 and 8 we plot T0 = ln(Λ0/Λ) against
f2(0) for f0(0) = 10.0 and f1(0) = 0.1 in the case of the
truncation at n = 2 for d = 5 and d = 6, respectively.
We see that T0 is peaked at f2(0) 	 0.0015 for d = 5 and
f2(0) 	 0.002 for d = 6, respectively. As we can see from
Figs. 7 and 8, the maximal value Tmax is relatively low
compared with the four-dimensional case (Figs. 2, 5 and
6). To increase Tmax, we of course have to decrease f1(0).
The fine-tuned value of f2(t = 0) is plotted as a function
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Fig. 7. Fine tuning of f2(0) for given values f1(0) = 0.1 and
f0(0) = 10.0 in the trivial, perturbatively unrenormalizable
case (d = 5). The running time T0 becomes maximal at f2(0) �
0.0015. f1 and f2 are the coupling constants for φ4 and φ6,
respectively (see (3.15))

Fig. 8. The same as Fig. 6 for d = 6. The running time T0

becomes maximal at f2(0) � 0.002

of f1(0) for the truncation at n = 2 with f0(0) = 1/4a in
Figs. 9 and 10 for d = 5 and d = 6, respectively.

In Fig. 11 we plot the running time T0 = ln(Λ0/Λ)
on the critical surface against C2 for d = 5, where the
non-perturbative ambiguity C2 is defined in (3.43). As for
d = 6 the general solutions corresponding to (3.42) and
(3.43) become

f0 =
3
8

− 3
32

f1 +
[

153
1024

+
3
64

C2 − 45
256

ln f1

]
f2
1

+
[
− 9

1204
ln f1 +

2745
4096

+
3

1280
C2

]
f3
1

+
[
−
(

1089
16384

+
135
512

C2

)
ln f1 +

2025
4096

(ln f1)2

− 10005
8192

+
363

20480
C2 +

9
256

C2
2

]
f4
1

+ O(f5
1 (ln f1)2), (3.49)

Fig. 9. Fine-tuned value of f2(0) as a function of f1(0) in d = 5
(f0(0) = 1/4a)

Fig. 10. The same as Fig. 9 in d = 6

f2 = f3
1

(
C2 − 15

4
ln f1 +

[
−135

16
ln f1 +

693
32

+
9
4
C2

]
f1

+ O(f2
1 (ln f1)2)

)
. (3.50)

Figure 12 shows the running time T0 on the critical surface
against C2 for d = 6, from which we obtain

C2 	 1.1 × 102(−7.6) for d = 5(6). (3.51)

In Fig. 13 and 14 we plot the running time T0 on the crit-
ical surface as a function of the f2(0), where f1(0) is fixed
at 0.07 and 0.15 for d = 5 and 6, respectively.

Using the perturbative evolution equation

∂f1

∂t
= (4 − d)f1 − 3f2

1 , (3.52)

we would obtain Tmax 	 1.75 and 0.85 for d = 5 and 6,
which should be compared with the non-perturbative re-
sults in Fig. 13 and 14, respectively. In more realistic sit-
uations, the running time should be understood as T0 =
ln(Λ0R), where R is a length scale of the compactifica-
tion of extra dimensions. Our calculations show that T0
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Fig. 11. Determination of the non-perturbative coefficient C2

(given in (3.43)) in d = 5

Fig. 12. The same as Fig. 11 for d = 6, where C2 is given in
(3.50)

depends on the values of the coupling constants of higher-
dimensional operators at 1/R. Therefore, it is possible to
find phenomenological constraints – triviality constraints
– on these coupling constants.

At last we would like to emphasize that our method
can be applied to physically more interesting theories such
as quantum gravity and Yang–Mills theories in higher di-
mensions, regardless of whether they have a non-trivial
fixed point.14 If there exists no non-trivial fixed point in
the low-energy effective theory of quantum gravity, the
maximal value of the intrinsic cutoff might depend on the
background geometry. Then it would be interesting to see
whether our criterion will select a specific background ge-
ometry.

14 See for instance [28–31,10] for non-perturbative investiga-
tions on the existence of a non-trivial fixed point in theses
theories. Formulations of the Wilsonian RG in gauge theories
and related studies have been made by many authors in recent
years [24,37]. Phenomenological applications of the Wilsonian
RG to higher-dimensional Yang–Mills theories have been con-
sidered in [38]

Fig. 13. Removing the non-perturbative ambiguity of f2 at
f1(0) = 0.07 on the critical surface in d = 5

Fig. 14. The same as Fig. 13 for d = 6 with f1(0) = 0.15

4 Conclusion

Since Kaluza and Klein [32] showed that the fundamen-
tal forces can be unified by introducing extra dimensions,
their idea has attracted attention for many decades. Re-
cently, there have been again growing interests in field
theories in extra dimensions [33–36]. In contrast to previ-
ously suggested Kaluza–Klein theories in which the size of
extra dimensions was of the order of the Planck length or
the inverse of the unification scale, the length scale of the
extra dimensions in recent theories can be so large that
they could be experimentally observed. Quantum correc-
tions may also be observable. But field theories in more
than four dimensions are usually unrenormalizable. How-
ever, how to control them in unrenormalizable theories is
less known.

We have addressed this problem in this paper, and ap-
plied the Wilsonian RG to unrenormalizable theories. We
have assumed the existence of a maximal ultraviolet cut-
off in a cutoff theory, and required that the theory should
be so adjusted that one arrives at the maximal cutoff. We
have applied our method to the scalar theory in four, five
and six dimensions. The peaks that we have seen in many
figures in Sect. 3 mean that a particular RG flow can be
selected from our requirement. Based on this finding, we
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would like to conclude that these unrenormalizable theo-
ries can obtain predictive power in the infrared regime. Al-
though we have used only the Wegner–Houghton equation
(3.7) in the derivative expansion approximation in lower
orders, we believe in the existence of such peaks in the
exact result. In other words, we believe that unrenormal-
izable theories can possess a renormalization-group theo-
retical structure, like perturbative renormalizability in a
perturbatively renormalizable theory, that enables us to
make unique predictions in the infrared regime in terms
of a finite number of independent parameters.

The RG flow, selected from our requirement, runs for
the maximal time, and in the low-energy regime this par-
ticular RG flow could be the best approximation to a
renormalized trajectory of the fundamental theory, for
which the cutoff theory is the low-energy effective theory.
Clearly, this idea can be tested in many different ways
and field theory models. Further results will be published
elsewhere.
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Appendix A: β functions

We give here the β functions of the coupling constants fn

for N = 4 and n ≤ 3, which are defined in (3.15). The β
functions are obtained by inserting the expansion (3.15)
into the evolution equation for F in (3.16):

β0 = −3
4

+ (d − 2)f0 −
[

3
4

+
f0f2

f1

]
∆, (A.1)

β1 = (4 − d)f1 − 3
4
f2
1 +

[
f2 − 2f0f

2
2

f1
+ 3f0f3

]
∆

−
[

9f2
1

4
+ 6f0f1f2 + 4f2

0 f
2
2

]
∆2, (A.2)

β2 = (6 − 2d)f2 +
3
4
f3
1 − 9

4
f1f2

+
[
3f3 − 3f0f2f3

f1
+ 6f0f4
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f0f1f3
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2
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β3 = (8 − 3d)f3 − 3
4
f4
1 − 3

2
f2
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where ∆ is defined in (3.18).
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7. M. Lüscher, P. Weisz, Nucl. Phys. B 290, 25 (1987)
8. S. Weinberg, Ultraviolet divergences in quantum theories

of gravitation, in General Relativity, ed. by S.W. Hawk-
ing, W. Israel (Cambridge Press, Cambridge 1979); J.F.
Donoghue, Phys. Rev. Lett. 72, 2996 (1994); Phys. Rev.



472 J. Kubo, M. Nunami: Unrenormalizable theories can be predictive

D 50, 3874 (1994); Perturbative dynamics of quantum gen-
eral relativity, gr-qc/9712070

9. S. Carlip, Rept. Prog. Phys. 64, 885 (2001)
10. W. Souma, Prog. Theor. Phys. 102, 181 (1999); O.

Lauscher, M. Reuter, Ultraviolet fixed point and gener-
alized flow equation of quantum gravity, hep-th/0108040;
O. Lauscher, M. Reuter, Is quantum Einstein gravity
non-perturbatively renormalizable?, hep-th/0110021; M.
Reuter, F. Saueressig, Renormalization group flow of
quantum gravity in the Einstein–Hilbert truncation, hep-
th/0110054

11. P.M. Stevenson, Phys. Lett. B 100, 61 (1981); Phys. Rev.
D 23, 2916 (1981)

12. F.J. Wegner, A. Houghton, Phys. Rev. A 8, 401 (1973)
13. J. Polchinski, Nucl. Phys. B 231, 269 (1984)
14. A. Hasenfratz, P. Hasenfratz, Nucl. Phys. B 270, 685

(1986); P. Hasenfratz, J. Nger, Z. Phys. C 37, 477 (1988)
15. C. Wetterich, Phys. Lett. B 301, 90 (1993); M. Bonini,

M. D’Attanasio, G. Marchesini, Nucl. Phys. B 409, 441
(1993)

16. T.R. Morris, Int. J. Mod. Phys. B 12, 1343 (1998); K-I.
Aoki, Int. J. Mod. Phys. B 14, 1249 (2000); J. Berges,
N. Tetradis, C. Wetterich, Non-Perturbative Renormaliza-
tion Group Flow in Quantum Field Theory and Statistical
Physics, hep-ph/0005122

17. J.F. Nicol, T.S. Chang, H.E. Stanley, Phys. Rev. Lett. 33,
540 (1974)

18. N. Tetradis, C. Wetterich, Nucl. Phys. B 422, 541 (1994);
B 398, 659 (1993); J. Berges, N. Tetradis, C. Wetterich,
Phys. Rev. Lett. 77, 873 (1996); Phys. Lett. B 393, 387
(1997)

19. T.R. Morris, Phys. Lett. 329, 241 (1994); Nucl. Phys. B
409, 363 (1997); T.R. Morris, M.D. Turner, Nucl. Phys. B
509, 637 (1998)

20. K-I. Aoki, K. Morikawa, W. Souma, J-I. Sumi, H. Terao,
Prog. Theor. Phys. 95, 409 (1996); Prog. Theor. Phys. 99,
451 (1998)

21. M. Aizenmann, Phys. Rev. Lett. 47, 1 (1981); J. Fröhlich,
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